Reaction Behavior of Phosphorus in Coal-Based Reduction of an Oolitic Hematite Ore and Pre-Dephosphorization of Reduced Iron
نویسندگان
چکیده
Coal-based reduction followed by magnetic separation is an effective way to recover iron from high phosphorus-containing oolitic hematite ore. Given that high quantities of dephosphorization agent are needed to obtain low phosphorus reduced iron, a novel approach is proposed by the authors. Without prior phosphorus removal, the phosphorus was enriched in the reduced iron during a reduction process, then high-phosphorus reduced iron was refined to low phosphorus molten iron and high phosphorus dephosphorization slag to be used as a phosphate fertilizer. The influences of various parameters, including the reduction temperature, the reduction time, and the C/O molar ratio, on the reaction behavior of phosphorus during reduction process were studied. Experimental results indicate that a higher reduction temperature, a longer reduction time, or a higher C/O molar ratio was favorable for the reduction of apatite to phosphorus and the enrichment of phosphorus in reduced iron. X-ray diffraction (XRD) analysis demonstrated that the apatite was reduced to phosphorus and Ca2SiO4 (or Ca(Al2Si2O8)) in the presence of SiO2 and Al2O3, whilst the phosphorus enriched in reduced iron formed Fe3P. The migration behavior of phosphorus was investigated using line scanning analysis of reduction products at different reduction times. The results show that the phosphorus primarily existed in the slag phase 10 min before reduction, and a large amount of phosphorus migrated into iron phase from slag phase with a reduction time of 40 min. The phosphorus content in the iron phase only slightly changed after 50 min. The pre-dephosphorization of reduced iron was performed at 1873 K, indicating a higher basicity or FetO content of CaO-based slag was beneficial to dephosphorization of the reduced iron.
منابع مشابه
RECOVERY OF IRON FROM LOW-GRADE HEMATITE ORE USING COAL-BASED DIRECT REDUCTION FOLLOWED BY MAGNETIC SEPARATION
In the present work, iron recovery from a low-grade hematite ore (containing less than 40% iron), which is not applicable in common methods of ironmaking, was studied. Non-coking coal was used as reducing agent. Reduction experiments were performed under various coal to hematite ratios and temperatures. Reduction degree was calculated using the gravimetric method. Reduced samples were subjected...
متن کاملThe Effects of Volatile Materials of Non-coking Coal on the Reduction of Hematite
One of the most important methods to produce sponge iron is coal based reduction of iron ore. Direct reduction methods based on coal are being improved due to the abundance of coal sources and its lower cost in comparison with natural gas. Volatile materials in coal play an important role in the reduction of iron oxides. In this study, noncoking coal with high volatile materials from Iran and c...
متن کاملThe Layered Reduction of Hematite (Iron Oxide) Ore by Non-Coking Coal: The Effect of Calcium Carbonate on Reduction
Due to the abundance of the non-coking coal and limitations as well as the high costs of the natural gas, the present study examined the direct reduction of hematite (iron oxide) ore in the temperature range of 800-1000 °C by the non-coking coal volatiles. Approximately, 74.9% of the total amounts of volatiles and gases exit the coal up to 800°C. The onset temperature to exit volatiles from the...
متن کاملAn Investigation on the Reduction of Iron Ore Pellets in Fixed Bed of Domestic Non–Coking Coals
In this study, the isothermal reduction of iron oxide pellets, made of Iranian Chadormalo, Gole-gohar, and Sangan iron ores, was investigated in the temperature range of 900-1100°C. Tabas, Pabdana, Babnizoo, Karmozd, and Shahrood domestic coals were used as reductants. Parametric studies were performed and the effects of such factors as temperature, average particle size of iron ore and coal fi...
متن کاملAn Investigation on the Reduction of Iron Ore Pellets in Fixed Bed of Domestic Non–Coking Coals
In this study, the isothermal reduction of iron oxide pellets, made of Iranian Chadormalo, Gole-gohar, and Sangan iron ores, was investigated in the temperature range of 900-1100°C. Tabas, Pabdana, Babnizoo, Karmozd, and Shahrood domestic coals were used as reductants. Parametric studies were performed and the effects of such factors as temperature, average particle size of iron ore and coal fi...
متن کامل